EMT and Dissemination Precede Pancreatic Tumor Formation
نویسندگان
چکیده
Metastasis is the leading cause of cancer-associated death but has been difficult to study because it involves a series of rare, stochastic events. To capture these events, we developed a sensitive method to tag and track pancreatic epithelial cells in a mouse model of pancreatic cancer. Tagged cells invaded and entered the bloodstream unexpectedly early, before frank malignancy could be detected by rigorous histologic analysis; this behavior was widely associated with epithelial-to-mesenchymal transition (EMT). Circulating pancreatic cells maintained a mesenchymal phenotype, exhibited stem cell properties, and seeded the liver. EMT and invasiveness were most abundant at inflammatory foci, and induction of pancreatitis increased the number of circulating pancreatic cells. Conversely, treatment with the immunosuppressive agent dexamethasone abolished dissemination. These results provide insight into the earliest events of cellular invasion in situ and suggest that inflammation enhances cancer progression in part by facilitating EMT and entry into the circulation.
منابع مشابه
SET contributes to the epithelial-mesenchymal transition of pancreatic cancer
Pancreatic cancer has a devastating prognosis due to 80-90% of diagnostic cases occurring when metastasis has already presented. Activation of the epithelial-mesenchymal transition (EMT) is a prerequisite for metastasis because it allows for the dissemination of tumor cells to blood stream and secondary organs. Here, we sought to determine the role of SET oncoprotein, an endogenous inhibitor of...
متن کاملZEB1 in Pancreatic Cancer
Pancreatic cancer is one of the most malignant human neoplasias. On the molecular level, epithelial-mesenchymal transition (EMT) has been demonstrated to contribute to the malignant phenotype of pancreatic cancer cells. ZEB1 is a transcriptional repressor that has been identified as an inducer of EMT. A negative feedback loop between ZEB1 and microRNA-200c has been shown to regulate this EMT in...
متن کاملHS-173, a novel PI3K inhibitor suppresses EMT and metastasis in pancreatic cancer
Pancreatic cancer is one of the most aggressive solid malignancies prone to metastasis. Epithelial-mesenchymal transition (EMT) contributes to cancer invasiveness and drug resistance. In this study, we investigated whether HS-173, a novel PI3K inhibitor blocked the process of EMT in pancreatic cancer. HS-173 inhibited the growth of pancreatic cancer cells in a dose- and time-dependent manner. M...
متن کاملEMT and Treatment Resistance in Pancreatic Cancer
Pancreatic cancer (PC) is the third leading cause of adult cancer mortality in the United States. The poor prognosis for patients with PC is mainly due to its aggressive course, the limited efficacy of active systemic treatments, and a metastatic behavior, demonstrated throughout the evolution of the disease. On average, 80% of patients with PC are diagnosed with metastatic disease, and the hal...
متن کاملAntithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity.
In adaptation to oncogenic signals, pancreatic ductal adenocarcinoma (PDAC) cells undergo epithelial-mesenchymal transition (EMT), a process combining tumor cell dedifferentiation with acquisition of stemness features. However, the mechanisms linking oncogene-induced signaling pathways with EMT and stemness remain largely elusive. Here, we uncover the inflammation-induced transcription factor N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 148 شماره
صفحات -
تاریخ انتشار 2012